Reactor Operational Support
Supporting customers across the entire nuclear lifecycle

connected excellence in all we do
The challenge of delivering the next generation of nuclear power stations, coupled with the need to extend the lifetime of the existing fleet, while safely decommissioning the old, is one that Amec Foster Wheeler understands well.

Within our nuclear business, our mission is to help our customers meet this challenge by partnering with them to design and implement cost-effective, innovative solutions.

Our experience is unparalleled. We have been delivering in the nuclear sector since the very beginning and have played a critical role in major nuclear projects, including the design and build of every single nuclear power station in the UK. We’ve also been involved in the licensing of 19 out of 20 of the most recent new build projects in the US.

Whether you are a new entrant in the global nuclear renaissance, expanding existing nuclear infrastructure, consolidating assets to maximise output and longevity, or phasing out ageing power plants, we have the track record and the experience to add real value to both the vision and the journey.

What’s more, we are home to some of the best and most renowned world experts in the industry, with some 3,300 nuclear specialists supporting customers around the world in providing solutions to complex problems. As part of a global business, we can access the resources and skills of 40,000 engineering, consultancy and project management experts worldwide.

In this brochure, you can read about our reactor operational support expertise.

Our world-class experience means you can trust our ability to provide safe and cost-effective reactor support.
Safety and quality assurance
In everything we do, safety is always our foremost priority and our overriding objective.

No matter where we work or what we’re doing, we never compromise on the safety of our people, our partners or anyone affected by our projects.

Our relentless commitment to safety is encapsulated in our ‘Beyond Zero’ strategy for achieving sustainable, world-class health and safety performance. What’s more, our breadth of expertise across the entire nuclear lifecycle enables us to holistically manage nuclear safety and wider health, safety, security and environmental (HSSE) issues at every level.

Beyond Zero
The essence of our ‘Beyond Zero’ philosophy is the ceaseless pursuit of excellence. This commitment to continuous improvement is reflected in our company values down through our HSSE policy and management systems.

Our HSSE performance is a critical factor of our success. We do not regard a project as successful unless it is delivered safely. We never stop working to refine and strengthen our safety management approach to ensure it continues to meet the demands of a continually evolving industry.

Quality assurance
With our network of experienced assurance professionals and world-class integrated management system, our approach to quality assurance helps to ensure projects are consistently delivered on time, in full and free from errors.

We are committed to ensuring that our products and services conform to the expectations, needs and requirements of our customers. We are approved to international standards of quality, including: ISO 9001; ISO 14001; and OHSAS 18001.

In particular, we operate Lifetime Quality Assurance (QA) Programmes, which ensure quality policies are regularly reviewed, and we integrate quality, HSSE, project delivery and governance into a coherent approach that ensures projects are delivered to our customers’ requirements.

Working towards our Beyond Zero philosophy in the ceaseless pursuit of excellence
Reactor operational support
Our world-leading Reactor Services team supports nuclear generation through all key lifecycle stages

Safety
Prioritising and delivering safety objectives while maintaining operational flexibility.

Plant & equipment
Effectively managing and maintaining plant and equipment to achieve the best balance of reliability, availability and cost.

Life extension
Extending the useful life of plant to deliver radically improved returns on capital.

Maintenance
Helping customers to design cost-effective, flexible and responsive operating and maintenance regimes.

Innovation
Implementing novel engineering and analytical approaches to solve problems, release constraints and challenge legacy design concepts.

Find out more about our global experience in the following case studies.

Supporting the lifetime of assets
Life extension takes a deep understanding of nuclear engineering and the systems that underpin it

Extending the operation of complex nuclear assets beyond their original design takes a deep understanding of nuclear engineering and the systems that underpin it.

Our experts work across a huge variety of science and engineering-related projects. This ensures we have the experience and the expertise to design and implement solutions to extend the life of ageing nuclear power plants and equipment.

For decades, we’ve been helping our customers to deliver and our world-leading Reactor Services team supports nuclear generation through all key lifecycle stages. Specifically, we focus on: safety; the management and maintenance of plant and equipment; plant life extension; technology and innovation; ageing and obsolescence; and output optimisation.

“This has been a great collaborative effort between EDF Energy and Amec Foster Wheeler, which has delivered some impressive results.”
Ian Stewart, Station Director at Heysham 1

QR Code: Watch our video about the hot box dome project on YouTube

Engineering solutions
Client: EDF Energy
Location: Heysham and Hartlepool, UK
Scope: Inspection and bleed hole creation in the hot box dome

A rise in temperature on the hot box dome surface (a steel dome that separates coolant gasses) on reactors at Heysham and Hartlepool power stations led to an innovative project between EDF Energy and Amec Foster Wheeler to enable improvements on both power stations. The hot box dome is the element within a reactor that separates cooler, high-pressure gas from hotter gas that is sent to the boilers as part of the power generation process.

A joint EDF Energy and Amec Foster Wheeler team found a unique approach, which involved drilling bleed holes, remotely, within the reactor control rod guide tubes that go through the dome. Working collaboratively, Amec Foster Wheeler developed, designed and manufactured complex equipment to detect the dome height, drill and weld remotely under high temperature and radiation conditions.

A full-scale, quarter section mock-up test rig was constructed, within Amec Foster Wheeler’s facilities, in a short timescale, to conduct trials, provide operator training and prove to regulators the technique would work and could be deployed safely. Then the process was refined to make it perfect before deploying for real on the reactors.

The technique has now been deployed successfully and has achieved temperature reductions in the immediate area around the drilled locations, as well as cooling across the dome generally.

Benefits:
• A joint Amec Foster Wheeler/EDF Energy project team was set up to undertake equipment design and verification safety case, method statements and training. This ensured the project ran smoothly and on time
• Using Amec Foster Wheeler’s laboratory and test rig facilities at Birchwood, a full-scale, quarter section test rig was constructed to conduct trials and provide training to ensure a smooth process on site
• A reduction of approximately 20°C in the immediate area around the drilled locations with additional cooling across the dome.
Innovation in inspection and upgrade

Client: EDF Energy
Location: Heysham and Hartlepool, UK
Scope: Boiler closure unit (BCU) inspection and instrumentation

Amec Foster Wheeler was involved in two significant projects with EDF Energy, which enabled the inspection and upgrading of the BCU. The works were split into: BCU inspection and re-greasing; and BCU instrumentation.

Working 24 hours a day over several months, Amec Foster Wheeler’s team developed a number of innovative techniques for inspection, measurement and re-greasing within the BCUs, bringing the reactors back online ahead of anticipated timescales.

Amec Foster Wheeler’s team led the project, including supply chain management.

Amec Foster Wheeler’s role included the design, build and commissioning of approximately 8,000 new instruments for controlling and monitoring key parameters of the newly installed BCU bands, along with a bespoke bundle profile measurement tool.

The team also designed and produced highly innovative prototype equipment for seven different inspection and measurement tasks within the BCU to support the teams on site.

Benefits:
- Programme completed and reactors returned to power much more quickly than originally anticipated
- Exemplary project work led to this being the largest single remote inspection programme ever undertaken by EDF Energy
- Design and application of innovative ‘bundle profile measurement tool’ which enabled teams to overcome difficult challenges
- A wide range of support was provided, including workshops, technical training, software development, design substantiation and safety case support to ensure the project ran effectively, safely and on time

Magnox end of life fuel cycle management

Client: Magnox Limited
Location: Multiple sites (UK)
Scope: Fuel cycle management

Fuel cycle management is important in order to achieve optimum economic operation within safety constraints. Amec Foster Wheeler has extensive experience in this area.

In 2003, a programme of work began to optimise the terminal fuel cycles for the last four stations of the Magnox fleet. The constraints on the project at that time were:
- The uranium supply contract was closed
- Fuel production had a defined order
- The tonnage of fuel to reprocess was fixed
- The fuel elements (types and number) available to each site were fixed

Amec Foster Wheeler supported the end of generation fuel cycles for the Magnox fleet in a multi-disciplinary project involving programme management and the production of supporting justifications to obtain the necessary regulatory approval for a change in fuel cycle. These activities enabled the extension of the life of the last plants in this fleet.

Benefits:
- Sizewell A and Dungeness A shut down at full power on their target dates
- Wylfa and Oldbury had a much more efficient fuel cycle
- Wylfa will operate for five years longer than originally planned with no new fuel purchased

VVER reactor cleaning services

Client: Slovenske elektrarne, a.s.
Location: Bohunice Nuclear Power Plant, Mochovce Nuclear Power Plant, Slovak Republic
Scope: Reactor cleaning services for VVER units

Slovenske elektrarne operate two VVER nuclear units at Bohunice Nuclear Power Plant and two VVER units at Mochovce Nuclear Power Plant. In its search for a supplier of reactor cleaning services, Amec Foster Wheeler was recognised as a reliable and experienced partner.

Amec Foster Wheeler delivered complex reactor cleaning services on the reactors on VVER 440 units. Specifically, this involved:
- Pumping out the sludge from the reactor pressure vessel with concentrated H3BO3, immediately after fuel removal but before coolant removal from the reactor
- Monitoring and cleaning safety and control rod assembly dumpers during extended outages. Impurities and sludge are pumped out from all the safety and control rod assembly channels
- Performance of volumetric cleaning and filtration of coolant in the reactor pressure vessel
- Cleaning of larger particles from the bottom of the reactor

Benefits:
- Reactor cleaning was carried out during reactor outages, with a focus on decreasing the outage time
- Use of Amec Foster Wheeler’s innovatively-designed equipment for cleaning of the reactor bottom using the set of pumps
- Visual examination of the reactors’ internal structures, carried out during the cleaning process, provided further valuable information for the customer about the overall condition of the reactor pressure vessel
Innovative approach to customer challenges
Ensuring customer solutions deliver significant benefits

Integrating fuel cycle management processes

Client: EDF Energy
Location: All sites
Scope: Integrated fuel cycle management (IFCM) programme

As part of a drive for innovative improvement, Amec Foster Wheeler is working with EDF Energy on an IFCM programme that minimises lifetime fuel costs for on-site fuel route operations.

Fuel cycle calculations is a fundamental aspect of fuel management, used to ensure the long-term, safe and sustainable operation of the reactor. This has a huge influence on cost and revenues, with relatively small improvements in efficiency and fuel utilisation, potentially resulting in multi-million pound savings and increased generation across the nuclear fleet.

Working with EDF Energy, Amec Foster Wheeler’s experienced software developers and fuel cycle engineers are developing an enhanced fuel cycle development tool to automate and optimise fuel cycle calculations for this stage of the project.

Amec Foster Wheeler was able to utilise its technical background in reactor physics, fuel and core design, coding skills, modelling and optimisation with the customers’ operational requirements and fuel management understanding. This enabled the development of a toolset to support the cost-effective operation through life and towards decommissioning.

Benefits:
This programme is at a developmental stage with a beta release of the toolkit under review. The benefits Amec Foster Wheeler is driving for include:

- Minimising the levels of waste by maximising fuel burn-up
- Minimising disposal costs by maximising burn-up
- Maximising generation capacity for a given fuel input to drive better end of life performance
- Increasing overall generation

We’re able to: reduce timescales to achieve acceptable technical solutions; define optimum solutions that reduce supply chain costs, reduce the cost of ownership and enhance revenue generation; maximise the efficient use of existing materials; and complement and underpin the physics approach to reactor management.

Working in this way also enables the constant development of our own people, enhancing our original equipment manufacturer (OEM) knowledge to underpin best decision making, leveraging our capability in code development and modelling to support optimisation. It allows us to grow our skills base to support the most effective operating model for our customers.

Station blackout modification

Client: Westinghouse / ESKOM
Location: Koeberg Nuclear Power Station, Cape Town, South Africa
Scope: Installation of reactor coolant pump seal emergency supply system

The station blackout modification project aimed to reduce the consequences caused through the loss of all onsite and offsite AC power at Koeberg Nuclear Power Station.

A new design was created to install an independent seal cooling system with an independent power supply system. The independent power supply system would also feed the existing onsite battery chargers via changeover switches.

The design included a seal injection system, power supply design and installation and commissioning.

Benefits:
- Fully-automated system that requires no initial operator action
- Manual override and actuation capability from the main control room
- The time to achieve emergency seal injection is just two minutes
- In the event of a diesel generator failure, the other unit’s diesel is started and automatically cross connected

We pride ourselves on our commitment to solving customers’ challenges and optimising performance across technical, regulatory and commercial boundaries. Doing this allows us to deliver real benefits to our customers.

Spent fuel pool cooling upgrade modification

Client: Westinghouse / ESKOM
Location: Koeberg Nuclear Power Station, Cape Town, South Africa
Scope: Design services

A new design was required for the installation of an additional cooling loop in parallel with the existing spent fuel pool cooling system. With this, independent suction and discharge lines, an independent component cooling water supply and instrumentation and control systems were required.

Amec Foster Wheeler worked closely with Westinghouse to manage the hardware installation, which was performed in three stages: simulator upgrade; phase A installation; and phase B installation, which included all the piping tie-ins, spent fuel pool / cask compartment penetration, and final cable terminations as well as flushing, hydro testing and test and commissioning of the systems.

Benefits:
- The new design allows for normal and alternative power supplies to the existing supply and additional cooling loop pumps, as well as for spent fuel pool cooling system relaying and associated control room mimic indications
- The work was performed during the scheduled simulator outage together with the other modifications scheduled for the same outage
World-leading expertise to manage customer assets

Our asset management capabilities cover two distinct methodologies: ageing management; and equipment reliability.

Our lifecycle asset management service involves managing the effect of ageing on systems, structures and components, using a combination of component condition assessments and plant lifetime assessments. It enables us to improve system reliability, extend the useful life of plant and reduce the lifecycle costs of ownership for our customers.

We also provide ageing management support to our customers through ageing management audits, deep dives and the production of safety factor documents in line with PAS55 and NS2.10 International Standards (IEEE).

Our ageing management methodologies are in line with UK/HSSE best practices and draw upon the experience we have gained in many industries, from nuclear engineering to petrochemicals and mining.

Our unique combination of expertise and experience enables us to: develop our understanding of baseline equipment capability and condition; identify, evaluate and select options for equipment management; evaluate existing maintenance regimes and optimise future activity; and implement solutions from replacement through to re-engineering and effective spares management.

World-leading expertise to deliver asset performance

We work closely with our customers to deliver through-life management services.

Our approach addresses both planned and unplanned maintenance, significantly reducing failures and unplanned downtime, shortening the time from an incident to the restoration of operations.

This extends from developing the investment strategy through to implementing the strategy on diverse systems. We also help our customers to define plant condition and operation through three-yearly safety system reviews and ten-yearly periodic safety reviews. These help to demonstrate the case for safe, continued operation of plant – a crucial requirement of nuclear plant regulators.

Maximising the output of nuclear power plants

Client: EDF Energy
Location: Dungeness B Nuclear Power Station
Scope: Dungeness B recovery programme

The Dungeness B recovery team was established to address the underlying causes of significant output losses at the station. Amec Foster Wheeler was one of the key strategic partners tasked with delivery and support to EDF Energy.

Amec Foster Wheeler was appointed Site Equipment Reliability Lead for the recovery programme and ensured the key focus was on driving accountability. Establishing an integrated Amec Foster Wheeler and EDF Energy team, the ‘One Team’, has been crucial to the continued success of the programme and transition into normal business.

The recovery programme is a significant, pivotal piece of work in EDF Energy’s engagement with Amec Foster Wheeler and in what has been achieved. The importance of establishing the One Team as a permanent site presence cannot be underestimated. The success of the recovery programme has encouraged the station director to enter into discussions about using the same approach across all plant areas.
ANSWERS® Software Service

Providing advanced analytical tools to support engineering excellence

Our global customer base helps us to stay at the forefront in nuclear code use and develop solutions that can be applied to all reactor systems. This learning is embedded in the software and applications we develop and support the licensing of plant design). In particular, Amec Foster Wheeler has many years’ experience in the application of both US thermal-hydraulic and severe accident mechanistic codes, as well as commercial computational fluid dynamics (CFD) codes.

Nuclear Criticality Safety - MONK
MONK provides advanced geometry modelling and detailed continuous energy collision treatment to create realistic 3D models for an accurate Monte Carlo simulation of neutronic behaviour. MONK’s super history algorithm provides robust and reliable estimates of the neutron multiplication factor, k-effective and other parameters of interest.

Radiation Shielding and Dosimetry - MCBEND and RANKERN
MCBEND calculates neutron, gamma-ray and charged particle transport in sub-critical systems using Monte Carlo theory, discrete-ordinates, collision probability, particle transport in sub-critical systems using Monte Carlo methods. RANKERN is a point kernel package for assessing complex gamma-ray shielding.

Reactor Physics - WIMS and PANTHER
WIMS can model a wide range of reactor physics problems ranging from simple pin cell reactivity calculations to whole core estimates of power flux distributions for all thermal reactor types, including research reactors. There are a range of predefined calculation routes through WIMS, yet users can also customise their method of solution using diffusion theory, discrete-ordinates, collision probability, characteristics or Monte Carlo methods.

PANTHER is the leading neutron diffusion and thermal hydraulics code for the analysis of any thermal reactor core. All types of reactor calculation, fuel management, safety- transient analysis and online operational support, using fully consistent models with reference accuracy are available.

Nuclide Inventory - FISPIN
FISPIN calculates the changes occurring in the numbers of atoms of the nuclides of various species (heavy isotopes or actinides, fission products, and structural or activation materials) as a sample of nuclear fuel is subject to periods of irradiation and cooling.

Analysis of pressurised water reactors (PWRs)

- **Client:** Tractebel Engineering
- **Location:** Brussels
- **Scope:** MOX fuel route

Historically, Belgium has used a WIMS / PANTHER route to analyse its PWRs as it performs well for UOX cores. The focus of this programme has been to develop and then validate new WIMS / PANTHER methods for modelling Belgian PWRs containing a mixture of UOX and MOX fuels.

Difficulties arise in this situation due to strong flux gradients between adjacent UOX and MOX fuel assemblies.

Benefits:
- A multi-year programme of collaborative working between Tractebel Engineering, EDF Energy and Amec Foster Wheeler
- Developed a new route for analysing cores containing MOX fuel
- Validated new WIMS / PANTHER methods for modelling PWRs containing a mixture of UOX and MOX fuel

Reactor Pressure Vessel (RPV) dosimetry programme

- **Client:** Magnox
- **Location:** Berkeley
- **Scope:** Neutron flux calculations for the decommissioning inventories of Magnox plant

Building on the successful Magnox RPV dosimetry programme, MCBEND models have been used to determine thermal and epithermal neutron fluxes throughout each Magnox reactor.

All major components were included in the assessments, including the core, reflectors, core restraint and support, standpipes, pressure vessels and the concrete biological shields.

These were very large models indeed and demonstrated the ability of MCBEND to predict neutron fluxes throughout large structures, including concrete pressure vessels, with considerable attenuation.

Benefits:
- Improved radioactive inventory of the Magnox fleet
- Better estimates of the quantities of ILW, LLW and free-release materials
- Successful calculation of neutron fluxes throughout very large structures
Technology and Innovation
Exceptional facilities developing solutions for tomorrow’s problems

We operate comprehensive laboratory and engineering test rig facilities, in the UK and Slovakia, contributing to reactor operational excellence.

We provide our customers with insight into the likely performance of plant in the future and validation of the models used to underpin operation, maintenance and inspection strategies. We assess and develop materials to sustain operational performance in both the short term to permit timely maintenance and the long term to support lifetime management strategies.

Our bespoke equipment is designed to meet changing operational needs and equip the ability to operate safely with leading-edge inspection, engineering and testing capabilities (including NDT) delivered to plant locations that preclude standard maintenance and testing approaches.

Our chemistry and corrosion capabilities support the management of plant, which maximise lifetime and performance and minimise the risk of unplanned downtime. This is complemented by our test rig facilities, which allow us to hone techniques to maximise accuracy and minimise disruption to generation.

Our facilities are supported by approximately 700 experts who are delivering a wide range of technical services across the full scope of the nuclear industry.

Services include:
- Chemistry and corrosion
- Criticality, shielding and human factors
- Inspection and validation
- Mechanical testing
- Remote inspection and operations
- Radiochemical and chemical analysis
- Reactor physics and nuclear facility licensing / regulatory support
- Radiological and environmental assessments
- Structural integrity, materials and engineering simulation
- Waste technology and management

www.amecfw.com/technology-innovation

Services and experience across the entire nuclear lifecycle
New build and operational, right through to decommissioning and waste management

Uniquely, our expertise spans the entire nuclear lifecycle, from feasibility, R&D, design, manufacture, installation, commissioning and operation, right through to post-operational clean-out, decommissioning and clean-up.

Our services
New build:
- Strategic support to our customers across the nuclear new build lifecycle
- Expert knowledge of nuclear regulatory framework in UK, US and Canada, as well as the IAEA regulatory framework
- Programme management
- Licensing and regulatory support
- Engineering and safety

Reactor operational support:
- World-leading expertise to safely support nuclear generation through the entire asset lifecycle and operational challenges
- Working knowledge of, and experience with, all reactor technologies
- World-class facilities to support plant lifetime extension
- Programme and project management
- Innovative, analytical approaches to life extension
- Managing and maintaining plant and equipment to drive strong performance improvement
- Outage support
- World expertise in seismology, hydrology, risk assessment, plant safety and engineering

Decommissioning and clean-up:
- Long history of working on complex nuclear decommissioning sites and offer innovative ideas and solutions
- Waste management
- Decommissioning
- Remote operations
- Radioactive waste processing and disposal
- Site restoration and environmental remediation

Our experience
Multi-sector experience:
- 60 years’ experience leading the way in the nuclear industry
- Nuclear site management and governance
- Programme management
- Decommissioning strategies and costs

Major provider of services to the nuclear industry:
- Engineering and technical support for existing UK reactor fleet
- Major design and build capability and nuclear safety projects
- UK’s largest private sector radiochemical analysis laboratories
- Major multi-year integrated support frameworks
- Consultancy support to NDA and in-country regulators
- International experience with over 3,300 nuclear specialists around the world, supporting customers with local expertise while drawing on international experience
- Environmental remediation and restoration (UK / US government)

Management of complex waste streams - Technical expertise and advice for waste produced:
- During decommissioning (conventional / nuclear)
- At the end of the cycle (deep storage, graphite storage)

Development of technical solutions and costs:
- Site investigation, radiological monitoring, waste characterisation
- Decontamination services (eg primary circuit, fuel pool)
- Waste retrieval, processing, conditioning (eg sludge)
- Regulatory and licensing support
- Geological disposal facility advice
Reactor operational support services
Our breadth of skills includes all relevant disciplines for the entire nuclear lifecycle. The below lists all the disciplines relevant to the operational phase.

Electrical and C&I
- Power systems
- Computer controls systems
- Conventional C&I

Front-end design & optioneering
- Mechanical
- Civil
- HVAC
- Process
- Chemical
- Multi-discipline design house

Information management
- Information / data management
- Publications services

Safety
- Safety case production
- Independent safety analysis
- HAZOPs, HAZANs, HAZIDs
- Probabilistic Analysis
- Deterministic Analysis
- Reliability Analysis

Shielding design and substantiation
- Human factors
- Safety management systems
- NSC and INSAs support
- Fire and explosion analysis

Project management and QA
- Risk management
- Planning and programme management
- Quality systems, ISO 9000

Physics and performance
- Reactor physics, criticality
- Radiological / shielding
- Computational fluid dynamics
- Fluid flow / heat transfer

Structural assessment
- Seismic engineering
- Stress / fracture analysis
- Structural analysis

Environmental & radiological
- BPEO / BPA / BPM
- Environmental management systems
- Environmental impact assessment
- Stakeholder engagements
- Radiological assessment & support

Health physics (RSA/RPA)
- In-house approved dosimetry service
- Contaminated land
- Contaminated oil
- Radon abatement
Amec Foster Wheeler is a people business. We recognise that investment in our people is an investment in our future and in the future of the nuclear industry.

That’s why we have established the Amec Foster Wheeler Academy, to support the development of high level, leading-edge skills for our people, and for the benefit of our customers and partners.

What is the Amec Foster Wheeler Academy?

The Amec Foster Wheeler Academy brings together all the training and development programmes we currently offer across our business and delivers them via a consistent, integrated and accessible approach.

Our goal is to provide all our people with a clear, transparent picture of their individual career framework. We then support them in determining the development required to improve their skills and continue to meet evolving customer requirements as they progress through the business.

Elements of the Amec Foster Wheeler Academy

It is the Academy’s role to make sure that everyone has the opportunity to develop and reach their professional goal, while ensuring we have consistent knowledge embedded across the whole organisation. This helps to achieve our business aims and deliver the highest quality services to our customers, be that in management and leadership skills, project management, engineering and technical, supply chain management or business support functions.

Supporting our customers through the Academy

The Amec Foster Wheeler Academy also helps to support our customers directly, partnering with them to provide the knowledge they need to deliver and operate successful, sustainable nuclear projects.
World skills on your doorstep
A global business with local knowledge

- 3,000 nuclear specialists working at the forefront of the industry
- 36,000 employees operating in over 55 countries
- Deep understanding of the issues facing the industry now and in the future
- Ability to leverage cross-industry experience that brings unique insights and expertise
- Specialist expertise across the nuclear lifecycle that can offer innovative solutions to your challenges
- World-leading experience and capability available on your doorstep
- International decommissioning experience on complex sites
- Innovative approaches to industry challenges
- Independence from any one reactor technology and significant experience and knowledge of all current technologies